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Abstract

Ahlswede, Aydinian, and Khachatrian posed the following problem: what is the
maximum number of Hamming weight w vectors in a k-dimensional subspace of Fn2?
The answer to this question could be relevant to coding theory, since it sheds light
on the weight distributions of binary linear codes. We give some partial results. We
also provide a conjecture for the complete solution when w is odd as well as for the
case k ≥ 2w and w even.

One tool used to study this problem is a linear map that decreases the weight
of nonzero vectors by a constant. We characterize such maps.

1 Introduction

Ahlswede, Aydinian, and Khachatrian [1] introduced extremal problems with dimension
constraints. Begin with a class of set systems on the ground set [n] = {1, 2, . . . , n}. For
example, the set of intersecting families on [n]. Given a field F, a set system in this class
can be viewed as a collection of {0, 1}-valued vectors in Fn. The extremal problem with
a dimension constraint is to find the largest set system that has rank at most k.

In this paper, we consider a dimension constraint on uniform hypergraphs. To be more
precise, first recall that the Hamming weight of a vector v, denoted wt(v), is the number
of entries of v that are nonzero. Given n, k, w ∈ N and a field F, denote MF(n, k, w) to be
the maximum number of {0, 1}-valued vectors with Hamming weight w in a k-dimensional
subspace of Fn. Ahlswede, Aydinian, and Khachatrian found a formula for MR [1].

Theorem 1 (Ahlswede, Aydinian, and Khachatrian). Given n, k, w ∈ N,

MR(n, k, w) = MR(n, k, n− w),
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and for w ≤ n/2,

MR(n, k, w) =


(
k
w

)
if 2w ≤ k;(

2(k−w)
k−w

)
22w−k if k < 2w < 2(k − 1);

2k−1 if k − 1 ≤ w.

This paper focusses on the case F = F2. Given n, k, w ∈ N, denote

m(n, k, w) = MF2(n, k, w).

A complete description of m(n, k, w) might be relevant to coding theory, since it would
shed light on the weight distributions of binary linear codes. Determining m(n, k, w)
requires different techniques from those used to determine MR(n, k, w). In particular, the
proof in [1] of the Rn case makes explicit use of the fact that the sum of a non-empty
collection of positive numbers in R is nonzero.

In [2] Ashikhmin, Cohen, Krivelevich, and Litsyn give some upper bounds form(n, k, w)
and cite some conjectures for m(n, k, w) from personal correspondence with Khachatrian.
In [1] it is noted that m(n, k, w) depends crucially on the parity of w, while MR(n, k, w)
does not. In particular, every k-dimensional subspace of Fn2 has 2k − 1 nonzero elements,
and either 0 or 2k−1 odd weight elements. Thus m(n, k, w) ≤ 2k − 1 if w is even, and
m(n, k, w) ≤ 2k−1 if w is odd. If equality holds in the even case, then there is a dimension
k subspace of Fn2 all of whose nonzero vectors have weight w, which we call an equidistant
linear code. The following are noted in [1] and are consequences of standard facts about
equidistant linear codes over F2.

Proposition 2. Given n, k, w ∈ N we have m(n, k, w) = 2k − 1 if and only if there is
some t ∈ N for which w = t2k−1 and n ≥ t(2k − 1) = 2w − t.

Proposition 3. Suppose w is odd. We have m(n, k, w) = 2k−1 if and only if k ≤ w + 1
and n ≥ w + k − 1.

We generalize these results. Given w ∈ N, denote

f2(w) = max {e ∈ N : 2e divides w} .

In Section 2, we prove the following.

Theorem 4. Given n, k, w ∈ N, we have

m(n, k, w) ≤ 2k − 2(k−1)−f2(w),

with equality if and only if there exists t ∈ N such that t ≥ (k−1)−f2(w) ≥ 0, w = t2f2(w),
and n ≥ 2w − t+ (k − 1)− f2(w).

To prove this theorem, we need to understand the structure of equidistant linear codes.
This is provided by a theorem of Bonisoli [3], which needs the concepts of monomial
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equivalence and the binary simplex code. More can be found about these concepts in, for
example, [5].

Given n ∈ N, a field F, and subspaces V,W ⊆ Fn, we say a linear map φ : V → W , is
a monomial equivalence if φ is bijective and there are λ1, λ2, . . . , λn ∈ F× = F \ {~0} and
a permutation σ : [n]→ [n] such that for all v = (v1, v2, . . . , vn) ∈ V , we have

φ(v) =
(
λ1vσ(1), λ2vσ(2), . . . , λnvσ(n)

)
.

Define the binary simplex code of dimension k, denoted Sk, to be the row span of Mk,
the k× (2k−1) matrix whose columns are the unique vectors of Fk2 \{~0}. It is not difficult
to show that Sk is a k-dimensional equidistant code whose nonzero codewords have weight
2k−1. Proposition 2 claims that if w = t2k−1 and n ≥ 2w − t then there is an equidistant
linear code of dimension k and weight w in Fn2 . Indeed, define

← t times → ← n− t(2k − 1) columns→

Mk,t,n =

[
Mk Mk · · · Mk 0

]
.

Define S(k, t, n) to be the row span of this matrix. It is clear that S(k, t, n) ⊆ Fn2 ,
dimS(k, t, n) = k, and S(k, t, n) has constant nonzero weight w.

Proposition 5 (Bonisoli [3]). Let n, k, w ∈ N. If V ⊆ Fn2 is a k-dimensional equidistant
linear code of weight w then w = t2k−1 and V is monomially equivalent to S(k, t, n).

Clearly, every monomial equivalence is a weight-preserving linear map (i.e. a linear
map that does not change the Hamming weight of any vector in its domain). The converse
is a theorem of MacWilliams [7].

Theorem 6 (The MacWilliams Extension Theorem [7]). Let n ∈ N, let F be a finite field,
and let V,W ⊆ Fn be subspaces. If φ : V → W is a bijective weight-preserving linear map
then φ is a monomial equivalence.

We prove a generalization of this theorem.

Definition 1. Let n, c ∈ N, let F be a finite field, and let V,W ⊆ Fn be subspaces. We
say a linear map φ : V → W is a c-killer if for all v ∈ V \ {~0},

wt(φ(v)) = wt(v)− c.

Given n ∈ N, A ⊆ [n], and field F, denote the coordinate projection onto the coordinates
A by πA : Fn → Fn. That is, πA is the identity on A and the 0 map on the complement
of A.

Theorem 7. Let V,W ⊆ Fn be subspaces. If φ : V → W is a c-killer, then φ is a
monomial equivalence composed with a coordinate projection.

We use Theorem 7 to show the following.
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Proposition 8. Let n, k, w ∈ N, where 1 ≤ k, w ≤ n and w is odd. If m(n, k, w) =
2k−1 − 1, then k ≤ 3. Furthermore, we have

• m(n, 1, w) = 21−1 − 1 = 0 is impossible.

• m(n, 2, w) = 22−1 − 1 = 1 if and only if n = w.

• m(n, 3, w) = 23−1 − 1 = 3 if and only if w = 1 or n = w + 1.

We finish the paper with some conjectures and evidence for those conjectures. In
particular, we conjecture that for w odd,

m(n, k, w) = MR(n, k, w)

(despite the fact that equality is false in the case w is even). We also conjecture that for
w even and k ≥ 2w,

m(n, k, w) =

(
k + 1

w

)
. (1.1)

In [2] there a reference to a personal correspondence in which Khachatrian also conjectures
(1.1). Khachatrian also conjectures that for w < k < 2w, w even and k odd,

m(n, k, w) = 22w−k
(

2k − 2w

k − w

)
+

k−w∑
i=0

(
2k − 2w

2i

)(
2w − k
w−2i

2

)
.

The paper is organized as follows. In Section 2 we prove Theorem 4. In Section 3 we
prove Theorem 7. In Section 3.4 we use the killer classification to prove Proposition 8. In
Section 4 we give evidence for our conjectures.

2 The bound on m(n, k, w)

2.1 A supporting Theorem and Lemma

For q a prime power, denote the field with q elements by Fq. We will use the following
theorem of Bose and Burton [4]

Theorem 9 (Bose and Burton [4]). In an Fq-vector space V , let S be a set of nonzero
vectors that meets every subspace of a given dimension b. Then |S| ≥ (qk−b+1−1)/(q−1)
with equality iff S consists of the nonzero points (non-collinear vectors) in a subspace of
dimension k − b+ 1.

One way to meet the bound in Theorem 4 is to construct a space where the non-weight-
w vectors form a subspace of dimension k − 1 − f2(w). We use the following lemma to
establish that there is such a space under the conditions of Theorem 4.

Lemma 10. Let n, k, w, l ∈ N where l ≤ k. There is a k-dimensional code V ⊆ Fn2 whose
non-weight-w vectors are contained in a subspace of dimension l if and only if there is an
integer t ≥ l such that w = t2k−l−1 and n ≥ 2w − t+ l.
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Proof. Suppose there is t ≥ l such that w = t2k−l−1 and n ≥ 2w− t+ l. Then define M ′
k−l

to be Mk−l with a zero column appended on the right. Define V ′ to be the row space of
the k × (2w − t+ l) matrix

G′ =


11 · · · 1 0

· · ·
0

· · ·
0

11 · · · 1 0
0

0
11 · · · 1

M ′
k−l M ′

k−l M ′
k−l Mk−l Mk−l

 .

To be explicit, the number of M ′
k−l blocks is l, and the number of Mk−l blocks is t− l. The

number of columns of G′ is therefore l2k−l + (t− l)(2k−l − 1) = 2w− t+ l ≤ n. Thus, we
may pad G′ with sufficiently many 0 columns to get G, a k×n generator matrix. Let V be
the vector space generated by G. Suppose v ∈ V is the sum of a subset of the rows of G,
at least one of which is among the bottom k− l rows. Denote the complement of a binary
vector u by u. There is s ∈ Sk−l \ {~0} such that, up to permutation of the first l blocks,
v = (s0, . . . , s0, s0, . . . , s0, s, . . . , s, 0, . . . , 0). But wt(s) = 2k−l−1, and wt(s0) = 2k−l−1, so
the total weight of v is wt(v) = (l+ (t− l))2k−l−1 = w. Thus all non-weight-w vectors are
in the span of the first l rows, and we have found the desired vector space.

For the other direction, let V be a k-dimensional subspace of Fn2 whose non-weight-w
vectors are in a subspace U of dimension l. Notice that |U \{~0}| = 2l−1 = 2k−(k−l+1)+1−
1 < 2k−(k−l)+1 − 1. By Theorem 9, there is a subspace C of V \ (U \ {~0}) of dimension
k − l. This code has constant distance w, so w = t2k−l−1 for some integer t.

The support of a set of vectors V , denoted s(V ), is the set of coordinates on which V
is not always zero. Define Z to be the complement of the support of C. We claim that
the projection πZ is injective as a function of U . Pick u ∈ U \ {~0}. Given any vector
c ∈ C \ {~0}, we have c+ u /∈ U and hence wt(c+ u) = w. Thus

wt(πs(u) (c)) =
1

2
wt(u). (2.1)

In particular, πs(u) (C) is an equidistant linear code of dimension dim C = k− l. By Propo-
sition 5 we have that, up to permutation of entries, πs(u) (C) = S(k− l,wt(u)/2k−l,wt(u)).
In particular,

wt(πZ (u)) = |s(u) \ s(πs(u) (C))| = wt(u)− (2k−l− 1) wt(u)/2k−l = wt(u)/2k−l > 0 (2.2)

Thus πZ is injective on U and dim πZ (U) = dimU = l. Thus |s(πZ (U))| ≥ l. But then
n ≥ |s(V )| = |s(C)|+ |s(πZ (U))| ≥ 2w − t+ l.

We have left to show that t ≥ l. If T ⊆ Fn2 is a dimension l subspace then T has a
vector of weight at least l. Choose u′ ∈ πZ (U) with wt(u′) ≥ l. Let u be the corresponding
element in U . By (2.2), wt(u)/2k−l = wt(u′) ≥ l, so wt(u) ≥ l2k−l. For c ∈ C \ {~0} we
have, by (2.1), w ≥ wt(πs(u) (c)) = wt(u)/2 ≥ l2k−l−1. So t = w/2k−l−1 ≥ l.
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2.2 Proof of Theorem 4

Proof. First, we show that for all n, k, w ∈ N,

m(n, k, w) ≤ 2k − 2(k−1)−f2(w).

Let V ⊆ Fn2 be dimension k subspace with m(n, k, w) weight-w vectors. Let S be the set
of nonzero, non-weight-w vectors in V . Let b = f2(w) + 2. We claim that S intersects
every dimension b subspace. Otherwise there is an equidistant linear code of dimension b
in V \S and so by Proposition 2, w is divisible by f2(w)+1, a contradiction. By Theorem
9, |S| ≥ 2k−b+1 − 1 = 2k−f2(w)−1 − 1, and hence the bound holds.

If the bound is met, then also by Theorem 9, S is the nonzero vectors of a dimension
k − f2(w) − 1 subspace of V . By Lemma 10, w = t2f2(w), t ≥ k − f2(w) − 1, and
n ≥ 2w − t+ k − f2(w)− 1.

On the other hand, let n, k, w ∈ N and suppose that there exists an integer t ≥
(k − 1) − f2(w) ≥ 0 such that w = t2f2(w) and n ≥ 2w − t + (k − 1) − f2(w). Set
l = (k − 1) − f2(w). Then t ≥ l, w = t2k−l−1, and n ≥ 2w − t + l. By Lemma
10, there is a space V ⊆ Fn2 whose non-weight-w vectors have rank at most l. Thus
m(n, k, w) ≥ 2k − 2l = 2k − 2(k−1)−f2(w). Hence m(n, k, w) = 2k − 2(k−1)−f2(w).

3 Killers

3.1 Introduction

We now prove Theorem 7. This author and Lucas Sabalka found a more general theorem
[6], but they used a different proof technique. Theorem 7 is a generalization of Theorem
6, the MacWilliams Extension Theorem. We also apply Theorem 7 to determine when
m(m, k, w) = 2k−1 − 1 for odd w.

3.2 Binary c-killers

We prove the binary case separately because its proof more beautiful than the general
case.

The symmetric difference of sets S1, S2, . . . , Sk ⊆ [n] is the set of elements of [n] that
occur in an odd number of Si. We denote this by⊕

j∈[k]

Sj = {c ∈ [n] : |{i ∈ [k] : c ∈ Si}| ≡ 1(mod 2)} .

Given I ⊆ [k], denote

S(I) =
⋂
i∈I

Si.

We have the following fact, similar to the principle of inclusion and exclusion.
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Lemma 11. ∣∣∣∣∣∣
⊕
i∈[k]

Si

∣∣∣∣∣∣ =
∑
I⊆[k]
I 6=∅

(−2)|I|−1|S(I)|.

Proof. Given x ∈ n, define Cx = {i ∈ [k] : x ∈ Si}.∑
I⊆[k]
I 6=∅

(−2)|I|−1|S(I)| =
∑
I⊆[k]
I 6=∅

∑
x∈S(I)

(−2)|I|−1

=
∑
x∈[n]

∑
I⊆Cx
I 6=∅

(−2)|I|−1

=
∑
x∈[n]

−1

2

|Cx|∑
i=1

(
|Cx|
i

)
(−2)i

=
∑
x∈[n]

−1

2

(
(−1)|Cx| − 1

)

=

∣∣∣∣∣∣
⊕
i∈[k]

Si

∣∣∣∣∣∣
Let S ⊆ Fn and define O(S) to be the size of the set of bit positions where all of the

vectors of S overlap. More precisely,

O(S) = |{i ∈ [n] : πi (v) 6= 0∀ v ∈ S}| .

Lemma 12. Let n, k, c ∈ N, let V,W ⊆ Fn2 be subspaces, and let φ : V → W be a c-killer.
If B is a set of k linearly independent vectors from V then

O(φ(B)) = O(B)− c/2k−1.

Proof. We proceed by induction on k. The case k = 1 is clear by the definition of a
c-killer.

Let B be a set of k > 1 linearly independent vectors in Fn2 . By Lemma 11,

wt

(∑
v∈B

v

)
=
∑
I⊆B
I 6=∅

(−2)|I|−1O(I) (3.1)

and similarly

wt

(∑
v∈B

φ(v)

)
=
∑
I⊆B
I 6=∅

(−2)|I|−1O(φ(I)). (3.2)
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By induction and equations (3.1) and (3.2), we have

wt

(∑
v∈B

φ(v)

)
=
∑
I⊆B
I 6=∅

(−2)|I|−1O(φ(I))

= (−2)|B|−1O(φ(B)) +
∑
I⊆B
I 6=∅,B

(−2)|I|−1O(φ(I))

= (−2)|B|−1O(φ(B)) +
∑
I⊆B
I 6=∅,B

(−2)|I|−1(O(I)− c/2|I|−1)

= (−2)|B|−1O(φ(B)) +
∑
I⊆B
I 6=∅,B

[(−2)|I|−1O(I) + (−1)|I|c]

= (−2)|B|−1O(φ(B)) + wt(
∑
v∈B

v)− (−2)|B|−1O(B)

+ c[−1− (−1)|B|]

On the other hand,

wt

(∑
v∈B

φ(v)

)
= wt(φ(

∑
v∈B

v)) = wt(
∑
v∈B

v)− c.

Thus we have

wt(
∑
v∈B

v)− c = (−2)|B|−1O(φ(B)) + wt(
∑
v∈B

v)− (−2)|B|−1O(B)

+ c[−1− (−1)|B|].

Cancelling wt(
∑

v∈B v)− c and rearranging, we have

(−2)|B|−1O(φ(B)) = (−2)|B|−1O(B)− c(−1)|B|

O(φ(B)) = O(B)− c/2|B|−1.

Lemma 13. Let c > 1 be an integer and let V and W be binary spaces. If φ : V → W is a
c-killer then there exists a code C ⊆ F2c

2 with constant nonzero weight c and dim C = dimV .

Proof. Let B be a basis for V . By Lemma 12,

O(B)− c/2|B|−1 = O(φ(B)).

In particular, c/2|B|−1 is an integer. The lemma then follows from Proposition 2.
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We are now ready to prove our characterization of c-killers.

Proof of the binary case of Theorem 7. Let V ,W be subspaces of Fn2 , where dimV = k,
and suppose that φ : V → W is a c-killer. If c = 0, then we are done by Theorem 6, the
MacWilliams Extension Theorem. Thus we assume that c ≥ 1.

By Lemma 13, there is a k-dimensional equidistant linear code, C ⊆ F2c
2 , whose nonzero

weight is c. Since V and C are both k-dimensional vector spaces over F2, there is a linear
bijection

ψ : V → C.
Define W × C ⊆ Fn+2c

2 by

W × C = {wv : w ∈ W, v ∈ C} ,

where wv is the vector formed by concatenating w and v. Consider

φ× ψ : V → W × C,

defined by
(φ× ψ) (v) = φ(v)ψ(v).

Notice that wt((φ× ψ) (~0)) = 0 = wt(~0). Moreover, given v ∈ V \ {~0}, we have

wt((φ× ψ) (v)) = wt(φ(v)) + wt(ψ(v)) = wt(v)− c+ c = wt(v).

Thus φ × ψ preserves weight. By the MacWilliams Extension Theorem, φ × ψ is a
coordinate permutation. But

φ = π[n] ◦ (φ× ψ).

Thus φ is a coordinate permutation followed by a coordinate projection.

3.3 General c-killers

We now prove the c-killer classification theorem for spaces over general finite fields.

Theorem 14 (Bonisoli [3]). Let n, k, w ∈ N. There exists a k-dimensional subspace
C ⊆ Fnq , all of whose nonzero vectors have weight w, if and only if there exists t ∈ N such
that

w = tqk−1

and

n ≥ t
qk − 1

q − 1
.

Our proof of the general case for Theorem 7 will mirror the binary case. Let φ : V → W
be a c-killer. Set k = dimV . We will establish that c is divisible by qk−1. By Theorem 14,
there is a k-dimensional equidistant linear code of weight c. We then “stitch” this code
onto W , making φ a 0-killer. Finally we apply the MacWilliams Extension Theorem to
determine that this new map is a monomial equivalence.
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Given I, a multiset consisting of vectors from Fnq , we define the common support of I
to be

cs(I) = {x ∈ [n] : πx (v) 6= 0 for all v ∈ I} .

Given J , a multiset consisting of vectors from Fnq , we define the zero sum set of J to be

zs(J) =

{
x ∈ [n] : πx

(∑
v∈J

v

)
= 0

}
.

Further, we define
OJ(I) = |cs(I) ∩ zs(J)| .

In words, OJ(I) is the number of coordinates in the common support of I where the sum
of the vectors in J is 0. In particular, if S = {s} then O∅ (S) = wt(s) and OS (S) = 0.
The following lemma is not hard to prove.

Lemma 15. Let n ∈ N, and let S be a multiset of vectors in Fnq . Then

wt

(∑
s∈S

s

)
=
∑
I⊆S
I 6=∅

∑
J⊆I

(−1)|I|+|J |+1OJ(I).

�

By using Lemma 15 and induction, we may prove the following in a manner very
similar to the proof of Lemma 12.

Lemma 16. Let n, c ∈ N and let V,W ⊆ Fnq be subspaces. If φ : V → W is a c-killer and
S ⊆ V is linearly independent then∑

J⊆S

(−1)|J |OJ(S) =
∑
J⊆S

(−1)|J |Oφ(J)(φ(S)) + c. (3.3)

�

The following is a generalization of Lemma 12.

Lemma 17. With the setup in Lemma 16, we have

O(S) = O(φ(S)) + c

(
q − 1

q

)|S|−1

.

Proof. Denote F×q = Fq − {0} and denote the set of functions from S to F×q by
(
F×q
)S

.

Let α = (αv)v∈S ∈
(
F×q
)S

. Let J = {v1, . . . , vj} ⊆ S and denote αJ = {αvv : v ∈ J} ,
and α · J =

∑
v∈J αvv.
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For a fixed α ∈
(
F×q
)J\{vj}, we have∑
β∈F×q

O(α,β)J(S) =
∑
β∈F×q

∑
x∈cs(S)

πx((α,β)·J)=0

1

=
∑

x∈cs(S)

∑
β∈F×q

πx((α,β)·J)=0

1.

Notice that for x in the common support of S, πx (vj) 6= 0 and hence if πx (α · (J \ {vj})) 6=
0 then there is exactly one nonzero solution, β, to πx ((α, β) · J) = 0. Otherwise there is
no nonzero solution. Thus∑

β∈F×q

O(α,β)J(S) = |{x ∈ cs(S) : πx (α · (J \ {vj})) 6= 0}|

= O(S)−Oα(J\{vj})(S).

Hence ∑
γ∈(F×q )

J

OγJ(S) =
∑

α∈(F×q )
J\{vj}

∑
β∈F×q

O(α,β)J(S)

=
∑

α∈(F×q )
J\{vj}

[
O(S)−Oα(J\{vj})(S)

]
= (q − 1)j−1O(S)−

∑
α∈(F×q )J\{vj}

Oα(J\{vj})(S).

Notice that the rightmost sum is in exactly the same form as the leftmost sum. Thus, by
induction, we have

∑
γ∈(F×q )

J

OγJ(S) =

|J |∑
i=2

(−1)|J |+i(q − 1)i−1O(S)

=
(q − 1)

q

[
(q − 1)|J |−1 + (−1)|J |

]
O(S).
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Summing the left hand side of equation (3.3) over all α ∈ (F×q )
S
, we have∑

α∈(F×q )
S

∑
J⊆S

(−1)|J |OαJ(S)

=
∑
J⊆S

(−1)|J |
∑

α∈(F×q )
S

OαJ(S)

=
∑
J⊆S

(−1)|J |
∑

β∈(F×q )
S\J

∑
γ∈(F×q )

J

OγJ(S)

=
∑
J⊆S

(−1)|J |(q − 1)|S|−|J |
(q − 1)

q

[
(q − 1)|J |−1 + (−1)|J |

]
O(S)

=
q − 1

q
O(S)

[∑
J⊆S

(−1)|J |(q − 1)|S|−1 +
∑
J⊆S

(q − 1)|S|−|J |
]

= (q − 1)q|S|−1O(S).

Thus, summing the entire equation (3.3), we get

(q − 1)q|S|−1O(S) = (q − 1)q|S|−1O(φ(S)) + (q − 1)|S|c

and hence

O(S) = O(φ(S)) + c

(
q − 1

q

)|S|−1

.

Thus if φ : V → W is a c-killer and S is a basis for V then c is divisible by q|S|−1.
This proves Theorem 7 in general.

3.4 An Application of c-Killers

We will now apply the characterization of binary c-killers to determine the parameters for
which w is odd and m(n, k, w) = 2k−1 − 1. We’ve already determined when m(n, k, w) =
2k−1, so this is a next natural question.

Lemma 18. Let n, k, w ∈ N where w is odd, k ≥ 1, and n ≥ 1. If there is a k-dimensional
subspace V ⊆ Fn2 with exactly 2k−1−1 weight w vectors then one of the following properties
holds.

w = 1 and either a) k = 1 and n ≥ 2 or b) k = 2 or 3 and n ≥ 3 (3.4)

w ≥ 3 and k = 1 (3.5)

w ≥ 3 and 2 ≤ k ≤ blog2wc+ 2 and n ≥ w + 2k−2 − 1 (3.6)

w ≥ 3 and 2 ≤ k ≤ blog2 (w + 1)c+ 2 and n ≥ w + 2k−2. (3.7)
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Proof. Suppose w is odd and there is a k-dimensional subspace V < Fn2 with 2k−1 − 1
weight w vectors. When k ≥ 2, we define v to be the single odd weight vector of V that
does not have weight w. Set l = wt(v). Without loss of generality,

v =

R1︷ ︸︸ ︷
1 . . . 1

R0︷ ︸︸ ︷
0 . . . 0 ∈ V.

Here, Ri is the set of coordinates where v is i. In particular, |R1| = l. Let E be the
subspace of even weight vectors from V.
Case 1: w = 1.

Here we must have that 2k−1 ≤ k, and so k = 1, 2, or 3. The rest of (3.4) follows
easily.
Case 2: w ≥ 3 and k = 1.

In this case, (3.5) is satisfied.
Case 3: w ≥ 3, k ≥ 2, and w > l.

Let e ∈ E \ {~0} and notice that

w = wt(e+ v)

= wt(πR1 (e+ v)) + wt(πR0 (e+ v))

= l − wt(πR1 (e)) + wt(πR0 (e)),

and thus

wt(πR1 (e)) = wt(πR0 (e))− (w − l). (3.8)

Since wt(πR0(e)) ≥ w − l for all e ∈ E \ {~0}, we have that πR0 is injective on E . Thus we
may define φ : πR0 (E)→ πR1 (E) by

φ = πR1 ◦ πR0

−1.

(φ simply assigns the right hand side of e ∈ E to its left hand side). By equation (3.8),
φ is a (w − l)-killer. By Theorem 7 (the characterization of c-killers), there is a set of
coordinates S ⊆ R0 such that πS (E) is a equidistant linear code with nonzero weight w− l
and dimension equal to dim πR0 (E) = dim E = k − 1. Thus, by Proposition 2,

k − 1 ≤ f2(w − l) + 1 ≤ blog2(w)c+ 1.

Thus

k ≤ blog2(w)c+ 2.

Also by Proposition 2,
|R0| ≥ 2(w − l)− (w − l)/2k−2. (3.9)

Proposition 2 also tells us that 2k−2 divides (w − l). Thus

2k−2 ≤ w − 1.

the electronic journal of combinatorics 16 (2009), #R00 13



Thus

l ≤ w − 2k−2. (3.10)

Combining (3.9) and (3.10), we have

n = |R1|+ |R0|
= l + |R0|
≥ l + 2(w − l)− (w − l)/2k−2

= 2w − w/2k−2 − l(1− 1/2k−2)

≥ 2w − w/2k−2 − (w − 2k−2)(1− 1/2k−2)

= w + 2k−2 − 1.

Thus (3.6) is satisfied.
Case 4: w ≥ 3, k ≥ 2, and w < l.

By applying arguments similar to those above, we find that (3.7) is satisfied.

One can give constructions to show that the converse of Proposition 18 holds. We
omit them here.

We now prove Proposition 8.

Proof of proposition 8. Suppose that m(n, k, w) = 2k−1 − 1. First we show that k ≤ 3.
Suppose to the contrary that k > 3. Since one of the clauses (3.4)-(3.7) must be satisfied
and clauses (3.4) and (3.5) specify k ≤ 3, it must be that (3.6) or (3.7) is satisfied.

We have m(n, k, w) 6= 2k−1. Thus by Proposition 3, either k > w+ 1 or n < w+k−1.
First consider k > w + 1. Since one of (3.6) or (3.7) is true, it must be the case that

k ≤ max {blog2wc+ 2, blog2 (w + 1)c+ 2} = blog2 (w + 1)c+ 2,

and hence
w + 1 < k ≤ blog2 (w + 1)c+ 2.

As it turns out, w = 2 is the largest w for which w + 1 < blog2 (w + 1)c+ 2. Thus

k ≤ blog2 (2 + 1)c+ 2 = 3.

On the other hand, suppose n < w+ k− 1. Since one of (3.6) or (3.7) is true, we have

n ≥ min
{
w + 2k−2 − 1, w + 2k−2

}
= w + 2k−2 − 1.

Thus,
w + 2k−2 − 1 ≤ n < w + k − 1.

Therefore
2k−2 < k.

As it turns out, k = 3 is the largest k for which 2k−2 < k.
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We have established that k ≤ 3. If m(n, 1, w) = 0 then n is not large enough to
accommodate a single weight w vector. Thus n < w. This violates the assumption that
w ≤ n, so it is impossible to have m(n, 1, w) = 0.

If m(n, 2, w) = 1, then n is large enough to accommodate a weight w vector, but not
two of them. Thus n = w. If n = w then clearly m(n, 2, w) = 1.

If m(n, 3, w) = 3 then by Proposition 3, either k > w+ 1 or n < w+k− 1. In the first
case we have 3 > w + 1 and hence w < 2. Thus w = 1. If n < w + k − 1 then n < w + 2,
so n ≤ w + 1. But m(n, 3, w) > 1 implies n > w. Thus n = w + 1.

On the other hand, if w = 1, then we may take

V =
{
v000 . . . 000 : v ∈ F3

2

}
.

If n = w + 1, we may take the code V generated by the 3× n matrix1 1 1 · · · 1 1 1 0
1 1 1 · · · 1 1 0 1
1 1 1 · · · 1 0 1 1

 .

4 Conjectures

4.1 Large Dimension

We have the following conjecture.

Conjecture 19. Let n, k, w ∈ N. If n ≥ k and k ≥ 2w then

m(n, k, w) =

{ (
k+1
w

)
if w is even;(

k
w

)
if w is odd.

According to [2], Khachatrian made the same conjecture in personal correspondence.
We have checked it for n up to 14. Here we prove it for n = k + 1. Using a similar
technique, it is possible to prove it for w odd and n = k + 2.

Proposition 20. If k, w ∈ N and k ≥ 2w then

m(k + 1, k, w) =

{ (
k+1
w

)
w even;(

k
w

)
w odd.

Proof. Suppose w is even. The span of all of the weight-w vectors in Fk+1
2 has dimension

k, so we’re done. Thus we may assume that w is odd.
Given a vector space W < Fn2 , define Aw(W ) to be the number of weight w vectors

in W . Let V < Fk+1
2 be k-dimensional with Aw(V ) = m(k + 1, k, w). We have that V is

monomially equivalent to a vector space with a generator matrix of the form

G =
[
Ik c

]
.
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Here c is a column vector. By permuting rows and columns of G we may assume that c
is of the form

c = (0, 0, 0, . . . , 0, 0, 0︸ ︷︷ ︸
a

, 1, 1, 1, . . . , 1, 1, 1︸ ︷︷ ︸
b

).

Notice that a+ b = k.
If we drop c from G, how many weight-w vectors are lost, and how many are gained?

That is, are there more weight-w vectors in V or in V ′ = Fk2×{0}, the code with generator
matrix

G′ =
[
Ik ~0

]
?

Let L be the lost vectors. That is,

L = V \ V ′.

Let F be the found vectors. That is,

F = V ′ \ V.

We will construct an injective function f : L→ F . This will establish that |L| ≤ |F | and
thus,

Aw(V ′) = Aw(V )− |L|+ |F | ≥ Aw(V ).

Set
B = {a+ 1, a+ 2, . . . , a+ b = k} .

Notice that for v ∈ V , we have

wt(πB∪{k+1} (v)) ≡ 0(mod 2).

In particular, b 6= k, since this would imply that every vector in V has even weight. This
is a contradiction, since w is odd, and Aw(V ) = m(n, k, w) > 0. Note that

L =
{
v ∈ V : wt(π[k] (v)) = w − 1 and wt(πB (v)) ≡ 1(mod 2)

}
and

F =
{
v′ ∈ V ′ : wt(π[k] (v′)) = w and wt(πB (v)) ≡ 1(mod 2)

}
. (4.1)

We will now define f . The definition will depend (slightly) on the parity of a.
Case 1: a is odd.

Given l ∈ L, define

g(l) = min
{
i : wt

(
π[i] (l)π{i+1,...,k} (l)

)
= w

}
,

and set
f(l) = π[g(l)] (l)π{g(l)+1,...,k} (l) 0.

In words: we scan across l from left to right, inverting bits one at a time. We stop when
the weight on [k] is w, and we change the last bit to 0. We have three things to show:
that g(l) <∞ (so that f is well-defined), that f(l) ∈ F , and that f is injective.
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First we show that g(l) <∞. In fact, g(l) < k. Notice that

wt
(
π[k] (l)

)
= k − wt(π[k] (l))

= k − (w − 1)

≥ 2w − (w − 1)

= w + 1.

We have that wt
(
π[k] (l)

)
= w − 1, and wt

(
π[k] (l)

)
≥ w + 1. Since inverting a single bit

in a vector changes its weight by one, one of the intermediate inversions considered in the
definition of g must have weight w. Hence g(l) < k.

Now we show that f(l) ∈ F . By Equation (4.1), we need only show that f(l) ∈ V ′, that
wt(π[k] (f(l))) = w, and wt(πB (f(l))) ≡ 1(mod 2). The only requirement for f(l) ∈ V ′ is
that πk+1 (f(l)) = 0. This is true by definition of f . By definition of g, it is clearly true
that wt(π[k] (f(l))) = w. It is left to show that wt(πB (f(l))) ≡ 1(mod 2). Either g(l) ≤ a
or g(l) > a. In the first case,

wt(πB (f(l))) = wt(πB (l)) ≡ 1 mod 2.

Consider g(l) > a. Inversion of a single bit changes the parity of the weight of a vector.
Since wt(π[k] (l)) = w− 1 and wt(π[k] (f(l))) = w (they have different parities), g(l) must
be odd. Since a is odd and f inverts all bits on [a], f(l) inverts an even number of bits
on B. Thus

wt(πB (f(l))) ≡ wt(πB (l)) ≡ 1 mod 2.

Finally, we show that f is injective. Let l ∈ L. We show how to construct l from f(l).
Given m ∈ F , define

g′(m) = min
{
i : wt

(
π[i] (m)π{i+1,...,k} (m)

)
= w − 1

}
,

and set
f ′(m) = π[g(m)] (m)π{g(m)+1,...,k} (m) 1.

Now, it is not necessarily the case that g′(m) <∞. On the other hand, it is certainly the
case that g′(f(l)) ≤ g(l), since

wt
(
π[g(l)] (f(l))π{g(l)+1,...,k} (f(l))

)
= wt

(
π[g(l)] (l)π{g(l)+1,...,k} (l)

)
= wt

(
π[k] (l)

)
= w − 1.
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In fact, g′(f(l)) = g(l). If g′(f(l)) were less than g(l), then

wt
(
π[g′(f(l))] (f(l))

)
+ wt

(
π{g′(f(l))+1,...,k} (f(l))

)
= wt

(
π[k] (f(l))

)
= w

= (w − 1) + 1

= wt (f ′(f(l))) + 1

= wt
(
π[g′(f(l))] (f(l))

)
+ wt

(
π{g′(f(l))+1,...,k} (f(l))

)
+ 1.

Thus

wt
(
π[g′(f(l))] (f(l))

)
= wt

(
π[g′(f(l))] (f(l))

)
+ 1.

But this implies

wt

(
π[g′(f(l))] (l)π{g′(f(l))+1,...,k} (l)

)
= wt

(
π[g′(f(l))] (l)

)
+ wt

(
π{g′(f(l))+1,...,k} (l)

)
= wt

(
π[g′(f(l))] (f(l))

)
+ wt

(
π{g′(f(l))+1,...,k} (l)

)
= wt

(
π[g′(f(l))] (f(l))

)
+ 1 + wt

(
π{g′(f(l))+1,...,k} (l)

)
= wt

(
π[g′(f(l))] (l)

)
+ 1 + wt

(
π{g′(f(l))+1,...,k} (l)

)
= wt(π[k] (l)) + 1

= (w − 1) + 1

= w.

This contradicts the minimality of g(l). We have established that g′(f(l)) = g(l). Thus

f ′(f(l)) = f ′
(
π[g(l)] (l)π{g(l)+1,...,k} (l) 0

)
= π[g(l)] (l)π{g(l)+1,...,k} (l) 1

= l.

Case 2: a is even.
This case is very similar to the case where a is odd, but we do not invert the first bit

of [a].

4.2 A Complete Conjecture for Odd Weights

Conjecture 21. If n, k, w ∈ N and w is odd then

m(n, k, w) = MR(n, k, w).
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We have checked the conjecture for n up to 14. Notice that by Theorem 1 (the formula
for MR(n, k, w)), whenever we have been able to establish exact values for m(n, k, w), they
agree with MR(n, k, w). In particular, suppose k ≤ w+1 and n ≥ w+k−1 (the conditions
given in Proposition 3 that imply m(n, k, w) = 2k−1). Either w ≤ n/2 and k − 1 ≤ w, or
w > n/2, in which case n − w ≤ n/2, and since n ≥ w + k − 1, we have k − 1 ≤ n − w.
Thus by Theorem 1,

m(n, k, w) = 2k−1 = MR(n, k, w).

Furthermore, for k, w ∈ N with k ≥ 2w and w odd, we have

m(k, k, w) = m(k + 1, k, w) = m(k + 2, k, w)

=

(
k

w

)
= MR(k, k, w) = MR(k + 1, k, w) = MR(k + 2, k, w).

If w is odd and n is even then n − w is odd. If Conjecture 21 is true then we would
have

m(n, k, w) = MR(n, k, w) = MR(n, k, n− w) = m(n, k, n− w).

In fact, m(n, k, w) does have this symmetry.

Proposition 22. If n, k, w ∈ N where n is even and w is odd then

m(n, k, w) = m(n, k, n− w).

Proof. Let B be a basis of odd weight vectors for C that achieves Aw(C) = m(n, k, w).
Complement each element of B to get B′. Note that the code C ′ generated by B′ has
An−w(C ′) ≥ Aw(C). Thus m(n, k, n − w) ≥ m(n, k, w). By symmetry, m(n, k, n − w) =
m(n, k, w).
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